1.分段式存储管理为什么不回产生内部碎片

2.段式存储管理的进行段式管理

3.段式存储管理的段式管理原理

4.什么是分段存储管理

分段式存储管理为什么不回产生内部碎片

段式存储管理的优缺点-电脑系统段式存储

首先明确一点,内部碎片是什么?

内部碎片就是为每个进程分布的内存空间之中所没有被使用到的内存碎片。通常出现在分页式存储管理之中。分页式是什么应该很好理解,就是把内存按照分为一页页大小相同的页面,然后再把这些页面分配给进程。因此,在分配给进程时可能会出现这样的情况:进程需要3MB,分给他4页,每页1MB,这样4>3,就会造成1MB的内部碎片。

而分段式存储管理为什么不会产生内部碎片?归根结底是由分段本身的定义出发的。如果说分页式是系统对内存的分割,那么分段式就是用户对程序数据的分割。分页式是没有任何逻辑意义的,而分段式是有其意义在的。比如说一个程序有主程序段Main类,有通用库,有数据段,这样我们就把这个程序分为三段,分别对应Main,库,数据(说的是最浅显的,详细的可以百度其他),是有逻辑意义的独立单位。都这样分了,怎么还会出现内部碎片?反之,如果是分页式,就可能出现Main类横跨两页,且整个程序装入内存后还有碎片空间的可能了。

总之,引入分段式存储管理本就在一定程度上解决了内部碎片,并且满足了用户的需求。但是分段式存储管理也有不足之处,内存利用率变低了。因此又引入之后的段页式存储管理方式,这个自己百度就行。

参看计算机操作系统第四版,欢迎指正

段式存储管理的进行段式管理

为了进行段式管理,除了系统需要为每道程序分别设置段映象表外,还得由操作系统为整个主存系统建立一个实主存管理表,它包括占用区域表和可用区域表两部分。占用区域表的每一项(行)用来指明主存中哪些区域已被占用,被哪道程序的哪个段占用以及该段在主存的起点和长度。此外,还可以设置诸如该段是否进入主存后被改写过的字段,以便该段由主存中释放时,决定是否还要将其写回到辅存中原先的位置来减少辅助操作。可用区域表的每一项(行)则指明每一个未被占用的基地址和区域大小。当一个段从辅存装入主存时,操作系统就在占用区域表中增加一项,并修改可用区域表。而当一个段从主存中退出时,就将其在占用区域表的项(行)移入可用区域表中,并进行有关它是否可与其它可用区归并的处理,修改可用区域表。当某道程序全部执行结束或者是被优先级更高的程序所取代时,也应将该道程序的全部段的项从占用区域表移入可用区域表并作相应的处理。

段式存储管理的段式管理原理

为了进行段式管理,每道程序在系统中都有一个段(映象)表来存放该道程序各段装入主存的状况信息。段表中的每一项(对应表中的每一行)描述该道程序一个段的基本状况,由若干个字段提供。段名字段用于存放段的名称,段名一般是有其逻辑意义的,也可以转换成用段号指明。由于段号从0开始顺序编号,正好与段表中的行号对应,如2段必是段表中的第3行,这样,段表中就可不设段号(名)字段。装入位字段用来指示该段是否已经调入主存,“1”表示已装入,“0”表示未装入。在程序的执行过程中,各段的装入位随该段是否活跃而动态变化。当装入位为“1”时,地址字段用于表示该段装入主存中起始(绝对)地址,当装入位为“0”时,则无效(有时机器用它表示该段在辅存中的起始地址)。段长字段指明该段的大小,一般以字数或字节数为单位,取决于所用的编址方式。段长字段是用来判断所访问的地址是否越出段界的界限保护检查用的。访问方式字段用来标记该段允许的访问方式,如只读、可写、只能执行等,以提供段的访问方式保护。除此之外,段表中还可以根据需要设置其它的字段。段表本身也是一个段,一般常驻在主存中,也可以存在辅存中,需要时再调入主存。假设系统在主存中最多可同时有N道程序,可设N个段表基址寄存器。对应于每道程序,由基号(程序号)指明使用哪个段表基址寄存器。段表基址寄存器中的段表基址字段指向该道程序的段表在主存中的起始地址。段表长度字段指明该道程序所用段表的行数,即程序的段数。

什么是分段存储管理

页和分段系统有许多相似之处,但在概念上两者完全不同,主要表现在: 1、页是信息的物理单位,分页是为实现离散分配方式,以消减内存的外零头,提高内存的利用率;或者说,分页仅仅是由于系统管理的需要,而不是用户的需要。 段是信息的逻辑单位,它含有一组其意义相对完整的信息。分段的目的是为了能更好的满足用户的需要。 2、页的大小固定且由系统确定,把逻辑地址划分为页号和页内地址两部分,是由机器硬件实现的,因而一个系统只能有一种大小的页面。 段的长度却不固定,决定于用户所编写的程序,通常由编辑程序在对源程序进行编辑时,根据信息的性质来划分。 3、分页的作业地址空间是维一的,即单一的线性空间,程序员只须利用一个记忆符,即可表示一地址。 分段的作业地址空间是二维的,程序员在标识一个地址时,既需给出段名,又需给出段内地址。