1.计算机的发展历程是什么样的?

2.电脑系统的发展史

3.电脑发展的历史阶段是怎样的?

4.电脑是如何发展的?

5.跪求电脑的发展史

6.电脑的发展历史。

计算机的发展历程是什么样的?

中国家庭电脑发展史-家用电脑系统的发展历史

四个发展阶段接特点:

1、第一个发展阶段:1946-1956年电子管计算机的时代。1946年第一台电子计算机问世美国宾西法尼亚大学,它由冯·诺依曼设计的。占地170平方,150KW。运算速度慢还没有人快。是计算机发展历史上的一个里程碑。

2、第二个发展阶段:1956-1964年晶体管的计算机时代:操作系统。

3、第三个发展阶段:1964-10年集成电路与大规模集成电路的计算机时代(1964-1965)(1965-10)

4、第四个发展阶段:10-超大规模集成电路的计算机时代。

分类:

计算机发展阶段的划分以元器件来划分的。分别为:

1、第一代:电子管。

2、第二代:晶本管。

3、第三代:中,小规模集成电路。

4、第四代:超大规模集成电路。

5、第五代:智能计算机(未来)。

三、电子计算机未来的发展趋势是:巨型化、微型网、网络化、智能化、多媒体化方向发展。

扩展资料:

巨型化是为了适应尖端科学技术的需要,发展高速度、大存储容量和功能强大的超级计算机。随着人们对计算机的依赖性越来越强,特别是在军事和科研教育方面对计算机的存储空间和运行速度等要求会越来越高。此外计算机的功能更加多元化。

多媒体化:传统的计算机处理的信息主要是字符和数字。事实上,人们更习惯的是、文字、声音、像等多种形式的多媒体信息。多媒体技术可以集图形、图像、音频、、文字为一体,使信息处理的对象和内容更加接近真实世界。

网络化:互联网将世界各地的计算机连接在一起,从此进入了互联网时代。计算机网络化彻底改变了人类世界,人们通过互联网进行沟通、交流(OICQ、微博等),教育共享(文献查阅、远程教育等)、信息查阅共享(百度、谷歌)等。

特别是无线网络的出现,极大的提高了人们使用网络的便捷性,未来计算机将会进一步向网络化方面发展。

计算机人工智能化是未来发展的必然趋势。现代计算机具有强大的功能和运行速度,但与人脑相比,其智能化和逻辑能力仍有待提高。

人类不断在探索如何让计算机能够更好的反应人类思维,使计算机能够具有人类的逻辑思维判断能力,可以通过思考与人类沟通交流,抛弃以往的依靠通过编码程序来运行计算机的方法,直接对计算机发出指令。

随着微型处理器(CPU)的出现,计算机中开始使用微型处理器,使计算机体积缩小了,成本降低了。另一方面,软件行业的飞速发展提高了计算机内部操作系统的便捷度,计算机外部设备也趋于完善。

计算机理论和技术上的不断完善促使微型计算机很快渗透到全社会的各个行业和部门中,并成为人们生活和学习的必须品。计算机的体积不断的缩小,台式电脑、笔记本电脑、掌上电脑、平板电脑体积逐步微型化,为人们提供便捷的服务。因此,未来计算机仍会不断趋于微型化,体积将越来越小。

操作系统是计算机发展中的产物,它的主要目的有两个:一是方便用户使用计算机,是用户和计算机的接口。比如用户键入一条简单的命令就能自动完成复杂的功能,这就是操作系统帮助的结果。

二是统一管理计算机系统的全部,合理组织计算机工作流程,以便充分、合理地发挥计算机的效率。操作系统通常应包括下列五大功能模块:

(1)处理器管理:当多个程序同时运行时,解决处理器(CPU)时间的分配问题。

(2)作业管理:完成某个独立任务的程序及其所需的数据组成一个作业。作业管理的任务主要是为用户提供一个使用计算机的界面使其方便地运行自己的作业,并对所有进入系统的作业进行调度和控制,尽可能高效地利用整个系统的。

(3)存储器管理:为各个程序及其使用的数据分配存储空间,并保证它们互不干扰。

(4)设备管理:根据用户提出使用设备的请求进行设备分配,同时还能随时接收设备的请求(称为中断),如要求输入信息。

(5)文件管理:主要负责文件的存储、检索、共享和保护,为用户提供文件操作的方便。

操作系统的种类繁多,依其功能和特性分为分批处理操作系统、分时操作系统和实时操作系统等;依同时管理用户数的多少分为单用户操作系统和多用户操作系统;适合管理计算机网络环境的网络操作系统。

参考资料:

百度百科——计算机

电脑系统的发展史

1.手工操作(无操作系统):1946年第一台计算机诞生--20世纪50年代中期,还未出现操作系统,计算机工作用手工操作方式。

手工操作方式两个特点:

(1)用户独占全机。不会出现因已被其他用户占用而等待的现象,但的利用率低。

(2)CPU 等待手工操作。CPU的利用不充分。

2.批处理系统:加载在计算机上的一个系统软件,在它的控制下,计算机能够自动地、成批地处理一个或多个用户的作业(这作业包括程序、数据和命令)。

联机批处理系统:首先出现的是联机批处理系统,即作业的输入/输出由CPU来处理。

脱机批处理系统:为克服与缓解,高速主机与慢速外设的矛盾,提高CPU的利用率,又引入了脱机批处理系统,即输入/输出脱离主机控制。

3.多道程序系统

多道程序设计技术

所谓多道程序设计技术,就是指允许多个程序同时进入内存并运行。即同时把多个程序放入内存,并允许它们交替在CPU中运行,它们共享系统中的各种硬、软件。当一道程序因I/O请求而暂停运行时,CPU便立即转去运行另一道程序。

多道批处理系统

20世纪60年代中期,在前述的批处理系统中,引入多道程序设计技术后形成多道批处理系统(简称:批处理系统)。

4.分时系统

由于CPU速度不断提高和用分时技术,一台计算机可同时连接多个用户终端,而每个用户可在自己的终端上联机使用计算机,像独占机器一样(多用户分时系统是当今计算机操作系统中最普遍使用的一类操作系统)。

5.实时系统:实时系统在一个特定的应用中常作为一种控制设备来使用。

6.通用操作系统

操作系统的三种基本类型:多道批处理系统、分时系统、实时系统。

7.操作系统的进一步发展

进入20世纪80年代,大规模集成电路工艺技术的飞跃发展,微处理机的出现和发展,掀起了计算机展大普及的浪潮。一方面迎来了个人计算机的时代,同时又向计算机网络、分布式处理、巨型计算机和智能化方向发展。于是,操作系统有了进一步的发展,如:个人计算机操作系统、网络操作系统、分布式操作系统等。

电脑发展的历史阶段是怎样的?

1946年从第一台计算机诞生至今,按计算机用的电子器件来划分,计算机的发展大致经历了四个阶段。即:

第一代,以电子管为主要元件的电子管计算机(1946~1958);

电子管为基本电子器件;使用机器语言和汇编语言;主要应用于国防和科学计算;运算速度每秒几千次至几万次。

第二代,以晶体管为主要元件的晶体管计算机(1958~1964);

晶体管为主要器件;软件上出现了操作系统和算法语言;运算速度每秒几万次至几十万次。

第三代计算机使用了集成电路(1964~11);

普遍用集成电路;体积缩小;运算速度每秒几十万次至几百万次。

第四代计算机使用的是大规模和超大规模集成电路(11~ )。

以大规模集成电路为主要器件;运算速度每秒几百万次至上亿次。

现在,计算机已进入了在技术上、概念上和功能上都不同于前四代计算机的第五代计算机的发展阶段。总之,随着计算机技术的发展,计算机的体积是越来越小,容量越来越大。功能越来越强,使用和维护越来越方便。

 

电脑是如何发展的?

四个发展阶段:

第一个发展阶段:1946-1956年电子管计算机的时代。1946年第一台电子计算机问世美国宾西法尼亚大

学,它由冯·诺依曼设计的。占地170平方 ,150KW。运算速度慢还没有人快。是计算机发展历史上的一个里程碑。(ENIAC)(electronic numerical integator and calculator)全称叫“电子数值积分和计算机”。

第二个发展阶段:1956-1964年晶体管的计算机时代:操作系统。

第三个发展阶段:1964-10年集成电路与大规模集成电路的计算机时代

(1964-1965)(1965-10)

第四个发展阶段:10- 超大规模集成电路的计算机时代。

跪求电脑的发展史

ENIAC是电脑发展史上的一个里程碑本来,计算机的英文原词“computer”是指从事数据计算的人。而他们往往都需要借助某些机械计算设备或模拟计算机。这些早期计算设备的祖先包括有算盘,以及可以追溯到公元前87年的被古希腊人用于计算行星移动的安提基特拉机制。随着中世纪末期欧洲数学与工程学的再次繁荣,1623年由Wilhelm Schickard率先研制出了欧洲第一台计算设备,这是一个能进行六位以内数加减法,并能通过铃声输出答案的“计算钟”。使用转动齿轮来进行操作。

1642年法国数学家Pascal 在WILLIAM Oughtred计算尺的基础上,将计算尺加以改进,能进行八位计算。还卖出了许多制品,成为当时一种时髦的商品。

1801年,Joseph Marie Jacquard对织布机的设计进行了改进,其中他使用了一系列打孔的纸卡片来作为编织复杂图案的程序。Jacquard式织布机,尽管并不被认为是一台真正的计算机,但是它的出现确实是现代计算机发展过程中重要的一步。

19世纪前期,巴比奇.查尔斯(Babbage Charles )1792-1871英国数学家和分析仪发明者,他依据的原理与现代数字计算器的原理相似。是构想和设计一台完全可编程计算机的第一人,当时是1820年。但由于技术条件,经费限制,以及无法忍耐对设计不停的修补,这台计算机在他有生之年始终未能问世。约到19世纪晚期,许多后来被证明对计算机科学有着重大意义的技术相继出现,包括打孔卡片以及真空管。Hermann Hollerith设计了一台制表用的机器,就实现了应用打孔卡片的大规模自动数据处理。

在20世纪前半叶,为了迎合科学计算的需要,许许多多单一用途的并不断深化复杂的模拟计算机被研制出来。这些计算机都是用它们所针对的特定问题的机械或电子模型作为计算基础。20世纪三四十年代,计算机的性能逐渐强大并且通用性得到提升,现代计算机的关键特色被不断地加入进来。

1937年由克劳德·艾尔伍德·香农(Claude Shannon)发表了他的伟大论文《对继电器和开关电路中的符号分析》,文中首次提及数字电子技术的应用。他向人们展示了如何使用开关来实现逻辑和数算。此后,他通过研究Vannevar Bush的微分模拟器进一步巩固了他的想法。这是一个标志着二进制电子电路设计和逻辑门应用开始的重要时刻,而作为这些关键思想诞生的先驱,应当包括:Almon Strowger,他为一个含有逻辑门电路的设备申请了专利;尼古拉?特斯拉(Nikola Tesla),他早在1898年就曾申请含有逻辑门的电路设备;Lee De Forest,于1907年他用真空管代替了继电器。

Commodore公司在20世纪八十年代生产的Amiga 500电脑沿着这样一条上下求索的漫漫长途去定义所谓的“第一台电子计算机”可谓相当困难。1941年5月12日,Konrad Zuse完成了他的机电共享设备“Z3”,这是第一台具有自动二进制数学计算特色以及可行的编程功能的计算机,但还不是“电子”计算机。此外,其他值得注意的成就主要有:1941年夏天诞生的阿塔纳索夫-贝瑞计算机是世界上第一台电子计算机,它使用了真空管计算器,二进制数值,可复用内存;在英国于1943年被展示的神秘的巨像计算机(Colossus computer),尽管编程能力极其有限,但是它的的确确告诉了人们使用真空管既值得信赖又能实现电气化的再编程;哈佛大学的Harvard Mark I;以及基于二进制的“埃尼阿克”(ENIAC,1944年),这是第一台通用意图的计算机,但由于其结构设计不够弹性化,导致对它的每一次再编程都意味着电气物理线路的再连接。

开发埃尼阿克的小组针对其缺陷又进一步完善了设计,并最终呈现出今天我们所熟知的冯·诺伊曼结构(程序存储体系结构)。这个体系是当今所有计算机的基础。20世纪40年代中晚期,大批基于此一体系的计算机开始被研制,其中以英国最早。尽管第一台研制完成并投入运转的是“小规模实验机”(Small-Scale Experimental Machine,SSEM),但真正被开发出来的实用机很可能是EDSAC。

在整个20世纪50年代,真空管计算机居于统治地位。1958年 9月12日 在Robert Noyce(INTEL公司的创始人)的领导下,发明了集成电路。不久又推出了微处理器。1959年到1964年间设计的计算机一般被称为第二代计算机。

到了60年代,晶体管计算机将其取而代之。晶体管体积更小,速度更快,价格更加低廉,性能更加可靠,这使得它们可以被商品化生产。1964年到12年的计算机一般被称为第三代计算机。大量使用集成电路,典型的机型是IBM360系列。

到了70年代,集成电路技术的引入极大地降低了计算机生产成本,计算机也从此开始走向千家万户。12年以后的计算机习惯上被称为第四代计算机。基于大规模集成电路,及后来的超大规模集成电路。12年4月1日 INTEL推出8008微处理器。16年Stephen Wozinak(史提芬 沃兹奈克)和Stephen Jobs(史蒂夫 乔布斯)创办苹果计算机公司。并推出其Apple I 计算机。17年5月 Apple II 型计算机发布。19年6月1日 INTEL发布了8位元的8088微处理器。

1982年,微型电脑开始普及,大量进入学校和家庭。1982年1月Commodore 64计算机发布,价格:595美元。 1982 年2月80286发布。时钟频率提高到20MHz,并增加了保护模式,可访问16M内存。支持1GB以上的虚拟内存。每秒执行270万条指令,集成了134000个晶体管。

1990年11月: 第一代MPC (多媒体个人电脑标准)发布。处理器至少80286/12MHz,后来增加到80386SX/16 MHz ,及一个光驱,至少150 KB/sec的传输率。

1994年10月10日 Intel 发布75 MHz Pentium处理器。1995年11月1日Pentium Pro发布。主频可达200 MHz ,每秒钟完成4.4亿条指令,集成了550万个晶体管。19年1月8日Intel发布Pentium MMX。对游戏和多媒体功能进行了增强。

此后计算机的变化日新月异,1965年发表的摩尔定律发表不断被应证,预测在未来10~15年仍依然适用。

编辑本段发展阶段

历史上,计算机的发展经历了以下五个重要阶段。

⒈大型机阶段

大型机(Mainframe)经历了第一代电子管计算机,第二代晶体管计算机,第三代中小规模集成电路计算机,第四代超大规模集成电路计算机的发展过程,是计算机技术逐步走向成熟。

⒉小型机阶段

小型机(Minicomputer)是对大型主机进行的第一次“缩小化”。它能满足中小型企事业单位的信息处理要求,而且成本较低,使其价格可为中小部门接受。

⒊微型机阶段

微型机(Microcompuer)是对大型主机进行的第二次“缩小化”。16年苹果计算机公司成立,17年推出AppleⅡ微型机大获成功,成为个人及家庭能买的起的计算机。1981年IBM公司瑞出个人计算机IBM-PC,此后它又经历了若干代的演变,计算机得到空前的普及,逐渐形成了庞大的个人电脑市场。

⒋客户机/服务器阶段

早在1964年,IBM就与美国航空公司建立了第一个联机订票系统,把全美2000个订票终端用电话线连在一起。订票中心的IBM大型机处理订票事务,用今天的术语它就是今天的服务器,而分散在各地的订票终端则成为客户机,于是它们在逻辑上就构成一个早期的客户机/副武器系统。

随着微型机的发展,20世纪70年代出现了在局部范围(例如在一座大楼)内把计算机连在一起的技术,称为局域网。在局域网中,如果每台计算机在逻辑上都是平等的,不存在主从关系,就称为对等(peer to peer)网络。但是,大多数局域网都不是对等网络,而是非对等网络。在非对等网络中,存在主从关系,即某些计算机是扮演主角的服务器,其余计算机则是充当配角的客户机。早期的服务器主要是为其客户机提供共享的磁盘服务器,文件服务器,后来的服务器主要是数据库服务器,应用服务器等。

客户机/服务器(client/server)结构模式是对大型主机结构模式的一次挑战。由于客户机/服务器结构灵活,适应面广,成本较低,因此得到广泛应用。

⒌互联网阶段

自1969年美国国防部的阿帕网(ARPANET)运行以来,计算机广域网开始发展起来。1983年TCP/IP传输控制协议与网际互联协议正式成为阿帕网的协议标准,这使网际互联有了突飞猛进的发展。以它为主干发展起来的因特网(Internet)到1990年已经连接了3000多个网络和20万台计算机。进入20世纪90年代,因特网继续以指数方式迅猛发展。进入21世纪,全球约有1亿因特网用户。

1991年6月我国第一条与国际互联网连接的专线建成,它从中国科学院高能物理研究所接到美国斯坦福大学的直线加速器中心。到1994年我国实现了用TCP/IP协议的国际互联网的全功能连接,可以通过主干网接入因特网。

现在,计算机将向高速、大量化、数字化、综合化、个人化的趋势发展

电脑的发展历史。

计算机的发展历史

一、第一台计算机的诞生

第一台计算机(ENIAC)于1946年2月,在美国诞生。

ENIAC PC机

耗资 100万美圆 600美圆

重量 30吨 10kg

占地 150平方米 0.25平方米

电子器件 1.9万只电子管 100块集成电路

运算速度 5000次/秒 500万次/秒

二、计算机发展历史

1、第一代计算机(1946~1958)

电子管为基本电子器件;使用机器语言和汇编语言;主要应用于国防和科学计算;运算速度每秒几千次至几万次。

2、第二代计算机(1958~1964)

晶体管为主要器件;软件上出现了操作系统和算法语言;运算速度每秒几万次至几十万次。

3、第三代计算机(1964~11)

普遍用集成电路;体积缩小;运算速度每秒几十万次至几百万次。

4、第四代计算机(11~ )

以大规模集成电路为主要器件;运算速度每秒几百万次至上亿次。

三、我国计算机发展历史

从1953年开始研究,到1958年研制出了我国第一台计算机

在1982年我国研制出了运算速度1亿次的I、II型等小型系列机。

计算机的历史

计算机是新技术革命的一支主力,也是推动社会向现代化迈进的活跃因素。计算机科学与技术是第二次世界大战以来发展最快、影响最为深远的新兴学科之一。计算机产业已在世界范围内发展成为一种极富生命力的战略产业。

现代计算机是一种按程序自动进行信息处理的通用工具,它的处理对象是信息,处理结果也是信息。利用计算机解决科学计算、工程设计、经营管理、过程控制或人工智能等各种问题的方法,都是按照一定的算法进行的。这种算法是定义精确的一系列规则,它指出怎样以给定的输入信息经过有限的步骤产生所需要的输出信息。

信息处理的一般过程,是计算机使用者针对待解抉的问题,事先编制程序并存入计算机内,然后利用存储程序指挥、控制计算机自动进行各种基本操作,直至获得预期的处理结果。计算机自动工作的基础在于这种存储程序方式,其通用性的基础则在于利用计算机进行信息处理的共性方法。

计算机的历史

现代计算机的诞生和发展 现代计算机问世之前,计算机的发展经历了机械式计算机、机电式计算机和萌芽期的电子计算机三个阶段。

早在17世纪,欧洲一批数学家就已开始设计和制造以数字形式进行基本运算的数字计算机。1642年,法国数学家帕斯卡用与钟表类似的齿轮传动装置,制成了最早的十进制加法器。1678年,德国数学家莱布尼兹制成的计算机,进一步解决了十进制数的乘、除运算。

英国数学家巴贝奇在1822年制作差分机模型时提出一个设想,每次完成一次算术运算将发展为自动完成某个特定的完整运算过程。1884年,巴贝奇设计了一种程序控制的通用分析机。这台分析机虽然已经描绘出有关程序控制方式计算机的雏型,但限于当时的技术条件而未能实现。

巴贝奇的设想提出以后的一百多年期间,电磁学、电工学、电子学不断取得重大进展,在元件、器件方面接连发明了真空二极管和真空三极管;在系统技术方面,相继发明了无线电报、电视和雷达……。所有这些成就为现代计算机的发展准备了技术和物质条件。

与此同时,数学、物理也相应地蓬勃发展。到了20世纪30年代,物理学的各个领域经历着定量化的阶段,描述各种物理过程的数学方程,其中有的用经典的分析方法已根难解决。于是,数值分析受到了重视,研究出各种数值积分,数值微分,以及微分方程数值解法,把计算过程归结为巨量的基本运算,从而奠定了现代计算机的数值算法基础。

社会上对先进计算工具多方面迫切的需要,是促使现代计算机诞生的根本动力。20世纪以后,各个科学领域和技术部门的计算困难堆积如山,已经阻碍了学科的继续发展。特别是第二次世界大战爆发前后,军事科学技术对高速计算工具的需要尤为迫切。在此期间,德国、美国、英国部在进行计算机的开拓工作,几乎同时开始了机电式计算机和电子计算机的研究。

德国的朱赛最先用电气元件制造计算机。他在1941年制成的全自动继电器计算机Z-3,已具备浮点记数、二进制运算、数字存储地址的指令形式等现代计算机的特征。在美国,1940~1947年期间也相继制成了继电器计算机MARK-1、MARK-2、Model-1、Model-5等。不过,继电器的开关速度大约为百分之一秒,使计算机的运算速度受到很大限制。

电子计算机的开拓过程,经历了从制作部件到整机从专用机到通用机、从“外加式程序”到“存储程序”的演变。1938年,美籍保加利亚学者阿塔纳索夫首先制成了电子计算机的运算部件。1943年,英国外交部通信处制成了“巨人”电子计算机。这是一种专用的密码分析机,在第二次世界大战中得到了应用。

1946年2月美国宾夕法尼亚大学莫尔学院制成的大型电子数字积分计算机(ENIAC),最初也专门用于火炮弹道计算,后经多次改进而成为能进行各种科学计算的通用计算机。这台完全用电子线路执行算术运算、逻辑运算和信息存储的计算机,运算速度比继电器计算机快1000倍。这就是人们常常提到的世界上第一台电子计算机。但是,这种计算机的程序仍然是外加式的,存储容量也太小,尚未完全具备现代计算机的主要特征。

新的重大突破是由数学家冯·诺伊曼领导的设计小组完成的。1945年3月他们发表了一个全新的存储程序式通用电子计算机方案—电子离散变量自动计算机(EDVAC)。随后于1946年6月,冯·诺伊曼等人提出了更为完善的设计报告《电子计算机装置逻辑结构初探》。同年7~8月间,他们又在莫尔学院为美国和英国二十多个机构的专家讲授了专门课程《电子计算机设计的理论和技术》,推动了存储程序式计算机的设计与制造。

1949年,英国剑桥大学数学实验室率先制成电子离散时序自动计算机(EDSAC);美国则于1950年制成了东部标准自动计算机(AC)等。至此,电子计算机发展的萌芽时期遂告结束,开始了现代计算机的发展时期。

在创制数字计算机的同时,还研制了另一类重要的计算工具——模拟计算机。物理学家在总结自然规律时,常用数学方程描述某一过程;相反,解数学方程的过程,也有可能用物理过程模拟方法,对数发明以后,1620年制成的计算尺,己把乘法、除法化为加法、减法进行计算。麦克斯韦巧妙地把积分(面积)的计算转变为长度的测量,于1855年制成了积分仪。

19世纪数学物理的另一项重大成就——傅里叶分析,对模拟机的发展起到了直接的推动作用。19世纪后期和20世纪前期,相继制成了多种计算傅里叶系数的分析机和解微分方程的微分分析机等。但是当试图推广微分分析机解偏微分方程和用模拟机解决一般科学计算问题时,人们逐渐认识到模拟机在通用性和精确度等方面的局限性,并将主要精力转向了数字计算机。

电子数字计算机问世以后,模拟计算机仍然继续有所发展,并且与数字计算机相结合而产生了混合式计算机。模拟机和混合机已发展成为现代计算机的特殊品种,即用在特定领域的高效信息处理工具或仿真工具。

20世纪中期以来,计算机一直处于高速度发展时期,计算机由仅包含硬件发展到包含硬件、软件和固件三类子系统的计算机系统。计算机系统的性能—价格比,平均每10年提高两个数量级。计算机种类也一再分化,发展成微型计算机、小型计算机、通用计算机(包括巨型、大型和中型计算机),以及各种专用机(如各种控制计算机、模拟—数字混合计算机)等。

计算机器件从电子管到晶体管,再从分立元件到集成电路以至微处理器,促使计算机的发展出现了三次飞跃。

在电子管计算机时期(1946~1959),计算机主要用于科学计算。主存储器是决定计算机技术面貌的主要因素。当时,主存储器有水银延迟线存储器、阴极射线示波管静电存储器、磁鼓和磁心存储器等类型,通常按此对计算机进行分类。

到了晶体管计算机时期(1959~1964),主存储器均用磁心存储器,磁鼓和磁盘开始用作主要的存储器。不仅科学计算用计算机继续发展,而且中、小型计算机,特别是廉价的小型数据处理用计算机开始大量生产。

1964年,在集成电路计算机发展的同时,计算机也进入了产品系列化的发展时期。半导体存储器逐步取代了磁心存储器的主存储器地位,磁盘成了不可缺少的存储器,并且开始普遍用虚拟存储技术。随着各种半导体只读存储器和可改写的只读存储器的迅速发展,以及微程序技术的发展和应用,计算机系统中开始出现固件子系统。

20世纪70年代以后,计算机用集成电路的集成度迅速从中小规模发展到大规模、超大规模的水平,微处理器和微型计算机应运而生,各类计算机的性能迅速提高。随着字长4位、8位、16位、32位和64位的微型计算机相继问世和广泛应用,对小型计算机、通用计算机和专用计算机的需求量也相应增长了。

微型计算机在社会上大量应用后,一座办公楼、一所学校、一个仓库常常拥有数十台以至数百台计算机。实现它们互连的局部网随即兴起,进一步推动了计算机应用系统从集中式系统向分布式系统的发展。

在电子管计算机时期,一些计算机配置了汇编语言和子程序库,科学计算用的高级语言FORTRAN初露头角。在晶体管计算机阶段,事务处理的COBOL语言、科学计算机用的ALGOL语言,和符号处理用的LISP等高级语言开始进入实用阶段。操作系统初步成型,使计算机的使用方式由手工操作改变为自动作业管理。

进入集成电路计算机发展时期以后,在计算机中形成了相当规模的软件子系统,高级语言种类进一步增加,操作系统日趋完善,具备批量处理、分时处理、实时处理等多种功能。数据库管理系统、通信处理程序、网络软件等也不断增添到软件子系统中。软件子系统的功能不断增强,明显地改变了计算机的使用属性,使用效率显著提高。

在现代计算机中,设备的价值一般已超过计算机硬件子系统的一半以上,其技术水平在很大程度上决定着计算机的技术面貌。设备技术的综合性很强,既依赖于电子学、机械学、光学、磁学等多门学科知识的综合,又取决于精密机械工艺、电气和电子加工工艺以及计量的技术和工艺水平等。

设备包括存储器和输入输出设备两大类。存储器包括磁盘、磁鼓、磁带、激光存储器、海量存储器和缩微存储器等;输入输出设备又分为输入、输出、转换、、模式信息处理设备和终端设备。在这些品种繁多的设备中,对计算机技术面貌影响最大的是磁盘、终端设备、模式信息处理设备和转换设备等。

新一代计算机是把信息集存储处理、通信和人工智能结合在一起的智能计算机系统。它不仅能进行一般信息处理,而且能面向知识处理,具有形式化推理、联想、学习和解释的能力,将能帮助人类开拓未知的领域和获得新的知识。

计算技术在中国的发展 在人类文明发展的历史上中国曾经在早期计算工具的发明创造方面写过光辉的一页。远在商代,中国就创造了十进制记数方法,领先于世界千余年。到了周代,发明了当时最先进的计算工具——算筹。这是一种用竹、木或骨制成的颜色不同的小棍。计算每一个数学问题时,通常编出一套歌诀形式的算法,一边计算,一边不断地重新布棍。中国古代数学家祖冲之,就是用算筹计算出圆周率在3.1415926和3.1415927之间。这一结果比西方早一千年。

珠算盘是中国的又一独创,也是计算工具发展史上的第一项重明。这种轻巧灵活、携带方便、与人民生活关系密切的计算工具,最初大约出现于汉朝,到元朝时渐趋成熟。珠算盘不仅对中国经济的发展起过有益的作用,而且传到日本、朝鲜、东南亚等地区,经受了历史的考验,至今仍在使用。

中国发明创造指南车、水运浑象仪、记里鼓车、提花机等,不仅对自动控制机械的发展有卓越的贡献,而且对计算工具的演进产生了直接或间接的影响。例如,张衡制作的水运浑象仪,可以自动地与地球运转同步,后经唐、宋两代的改进,遂成为世界上最早的天文钟。

记里鼓车则是世界上最早的自动计数装置。提花机原理刘计算机程序控制的发展有过间接的影响。中国古代用阳、阴两爻构成八卦,也对计算技术的发展有过直接的影响。莱布尼兹写过研究八卦的论文,系统地提出了二进制算术运算法则。他认为,世界上最早的二进制表示法就是中国的八卦。

经过漫长的沉寂,新中国成立后,中国计算技术迈入了新的发展时期,先后建立了研究机构,在高等院校建立了计算技术与装置专业和计算数学专业,并且着手创建中国计算机制造业。

1958年和1959年,中国先后制成第一台小型和大型电子管计算机。60年代中期,中国研制成功一批晶体管计算机,并配制了ALGOL等语言的编译程序和其他系统软件。60年代后期,中国开始研究集成电路计算机。70年代,中国已批量生产小型集成电路计算机。80年代以后,中国开始重点研制微型计算机系统并推广应用;在大型计算机、特别是巨型计算机技术方面也取得了重要进展;建立了计算机服务业,逐步健全了计算机产业结构。

在计算机科学与技术的研究方面,中国在有限元计算方法、数学定理的机器证明、汉字信息处理、计算机系统结构和软件等方面都有所建树。在计算机应用方面,中国在科学计算与工程设计领域取得了显著成就。在有关经营管理和过程控制等方面,计算机应用研究和实践也日益活跃。

计算机科学与技术

计算机科学与技术是一门实用性很强、发展极其迅速的面向广大社会的技术学科,它建立在数学、电子学 (特别是微电子学)、磁学、光学、精密机械等多门学科的基础之上。但是,它并不是简单地应用某些学科的知识,而是经过高度综合形成一整套有关信息表示、变换、存储、处理、控制和利用的理论、方法和技术。

计算机科学是研究计算机及其周围各种现象与规模的科学,主要包括理论计算机科学、计算机系统结构、软件和人工智能等。计算机技术则泛指计算机领域中所应用的技术方法和技术手段,包括计算机的系统技术、软件技术、部件技术、器件技术和组装技术等。计算机科学与技术包括五个分支学科,即理论计算机科学、计算机系统结构、计算机组织与实现、计算机软件和计算机应用。

理论计算机学 是研究计算机基本理论的学科。在几千年的数学发展中,人们研究了各式各样的计算,创立了许多算法。但是,以计算或算法本身的性质为研究对象的数学理论,却是在20世纪30年代才发展起来的。

当时,由几位数理逻辑学者建立的算法理论,即可计算性理论或称递归函数论,对20世纪40年代现代计算机设计思想的形成产生过影响。此后,关于现实计算机及其程序的数学模型性质的研究,以及计算复杂性的研究等不断有所发展。

理论计算机科学包括自动机论、形式语言理论、程序理论、算法分析,以及计算复杂性理论等。自动机是现实自动计算机的数学模型,或者说是现实计算机程序的模型,自动机理论的任务就在于研究这种抽象机器的模型;程序设计语言是一种形式语言,形式语言理论根据语言表达能力的强弱分为O~3型语言,与图灵机等四类自动机逐一对应;程序理论是研究程序逻辑、程序复杂性、程序正确性证明、程序验证、程序综合、形式语言学,以及程序设计方法的理论基础;算法分析研究各种特定算法的性质。计算复杂性理论研究算法复杂性的一般性质。

计算机系统结构 程序设计者所见的计算机属性,着重于计算机的概念结构和功能特性,硬件、软件和固件子系统的功能分配及其界面的确定。使用高级语言的程序设计者所见到的计算机属性,主要是软件子系统和固件子系统的属性,包括程序语言以及操作系统、数据库管理系统、网络软件等的用户界面。使用机器语言的程序设计者所见到的计算机属性,则是硬件子系统的概念结构(硬件子系统结构)及其功能特性,包括指令系统(机器语言),以及寄存器定义、中断机构、输入输出方式、机器工作状态等。

硬件子系统的典型结构是冯·诺伊曼结构,它由运算器控制器、存储器和输入、输出设备组成,用“指令驱动”方式。当初,它是为解非线性、微分方程而设计的,并未预见到高级语言、操作系统等的出现,以及适应其他应用环境的特殊要求。在相当长的一段时间内,软件子系统都是以这种冯·诺伊曼结构为基础而发展的。但是,其间不相适应的情况逐渐暴露出来,从而推动了计算机系统结构的变革。

计算机组织与实现 是研究组成计算机的功能、部件间的相互连接和相互作用,以及有关计算机实现的技术,均属于计算机组织与实现的任务。

在计算机系统结构确定分配给硬子系统的功能及其概念结构之后,计算机组织的任务就是研究各组成部分的内部构造和相互联系,以实现机器指令级的各种功能和特性。这种相互联系包括各功能部件的布置、相互连接和相互作用。

随着计算机功能的扩展和性能的提高,计算机包含的功能部件也日益增多,其间的互连结构日趋复杂。现代已有三类互连方式,分别以中央处理器、存储器或通信子系统为中心,与其他部件互连。以通信子系统为中心的组织方式,使计算机技术与通信技术紧密结合,形成了计算机网络、分布计算机系统等重要的计算机研究与应用领域。

与计算实现有关的技术范围相当广泛,包括计算机的元件、器件技术,数字电路技术,组装技术以及有关的制造技术和工艺等。

软件 软件的研究领域主要包括程序设计、基础软件、软件工程三个方面。程序设计指设计和编制程序的过程,是软件研究和发展的基础环节。程序设计研究的内容,包括有关的基本概念、规范、工具、方法以及方法学等。这个领域发展的特点是:从顺序程序设计过渡到并发程序设计和分币程序设计;从非结构程序设计方法过渡到结构程序设计方法;从低级语言工具过渡到高级语言工具;从具体方法过渡到方法学。

基础软件指计算机系统中起基础作用的软件。计算机的软件子系统可以分为两层:靠近硬件子系统的一层称为系统软件,使用频繁,但与具体应用领域无关;另一层则与具体应用领域直接有关,称为应用软件;此外还有支援其他软件的研究与维护的软件,专门称为支援软件。

软件工程是用工程方法研究和维护软件的过程,以及有关的技术。软件研究和维护的全过程,包括概念形成、要求定义、设计、实现、调试、交付使用,以及有关校正性、适应性、完善性等三层意义的维护。软件工程的研究内容涉及上述全过程有关的对象、结构、方法、工具和管理等方面。

软件目动研究系统的任务是:在软件工程中用形式方法:使软件研究与维护过程中的各种工作尽可能多地由计算机自动完成;创造一种适应软件发展的软件、固件与硬件高度综合的高效能计算机。

计算机产业

计算机产业包括两大部门,即计算机制造业和计算机服务业。后者又称为信息处理产业或信息服务业。计算机产业是一种省能源、省、附加价值高、知识和技术密集的产业,对于国民经济的发展、国防实力和社会进步均有巨大影响。因此,不少国家取促进计算机产业兴旺发达的政策。

计算机制造业包括生产各种计算机系统、设备终端设备,以及有关装置、元件、器件和材料的制造。计算机作为工业产品,要求产品有继承性,有很高的性能-价格比和综合性能。计算机的继承性特别体现在软件兼容性方面,这能使用户和厂家把过去研制的软件用在新产品上,使价格很高的软件财富继续发挥作用,减少用户再次研制软件的时间和费用。提高性能-价格比是计算机产品更新的目标和动力。

计算机制造业提供的计算机产品,一般仅包括硬件子系统和部分软件子系统。通常,软件子系统中缺少适应各种特定应用环境的应用软件。为了使计算机在特定环境中发挥效能,还需要设计应用系统和研制应用软件此外,计算机的运行和维护,需要有掌握专业知识的技术人员,这常常是一股用户所作不到的。

针对这些社会需要,一些计算机制造厂家十分重视向用户提供各种技术服务和销售服务。一些独立于计算机制造厂家的计算机服务机构,也在50年代开始出现。到60年代末期,计算机服务业在世界范围内已形成为独立的行业。

计算机的发展与应用

计算机科学与技术的各门学科相结合,改进了研究工具和研究方法,促进了各门学科的发展。过去,人们主要通过实验和理论两种途径进行科学技术研究。现在,计算和模拟已成为研究工作的第三条途径。

计算机与有关的实验观测仪器相结合,可对实验数据进行现场记录、整理、加工、分析和绘制图表,显著地提高实验工作的质量和效率。计算机设计已成为工程设计优质化、自动化的重要手段。在理论研究方面,计算机是人类大脑的延伸,可代替人脑的若干功能并加以强化。古老的数学靠纸和笔运算,现在计算机成了新的工具,数学定理证明之类的繁重脑力劳动,已可能由计算机来完成或部分完成。

计算和模拟作为一种新的研究手段,常使一些学科衍生出新的分支学科。例如,空气动力学、气象学、弹性结构力学和应用分析等所面临的“计算障碍”,在有了高速计算机和有关的计算方法之后开始有所突破,并衍生出计算空气动力学、气象数值预报等边缘分支学科。利用计算机进行定量研究,不仅在自然科学中发挥了重大的作用,在社会科学和人文学科中也是如此。例如,在人口普查、社会调查和自然语言研究方面,计算机就是一种很得力的工具。

计算机在各行各业中的广泛应用,常常产生显著的经济效益和社会效益,从而引起产业结构、产品结构、经营管理和服务方式等方面的重大变革。在产业结构中已出观了计算机制造业和计算机服务业,以及知识产业等新的行业。

微处理器和微计算机已嵌入机电设备、电子设备、通信设备、仪器仪表和家用电器中,使这些产品向智能化方向发展。计算机被引入各种生产过程系统中,使化工、石油、钢铁、电力、机械、造纸、水泥等生产过程的自动化水平大大提高,劳动生产率上升、质量提高、成本下降。计算机嵌入各种武器装备和武器系统干,可显著提高其作战效果。

经营管理方面,计算机可用于完成统计、、查询、库存管理、市场分析、决策等,使经营管理工作科学化和高效化,从而加速资金周转,降低库存水准,改善服务质量,缩短新产品研制周期,提高劳动生产率。在办公室自动化方面,计算机可用于文件的起草、检索和管理等,显著提高办公效率。

计算机还是人们的学习工具和生活工具。借助家用计算机、个人计算机、计算机网、数据库系统和各种终端设备,人们可以学习各种课程,获取各种情报和知识,处理各种生活事务(如订票、购物、存取款等),甚至可以居家办公。越来越多的人的工作、学习和生活中将与计算机发生直接的或间接的联系。普及计算机教育已成为一个重要的问题。

总之,计算机的发展和应用已不仅是一种技术现象而且是一种政治、经济、军事和社会现象。世界各国都力图主动地驾驭这种社会计算机化和信息化的进程,克服计算机化过程中可能出现的消极因素,更顺利地向高

时代的车轮即将驶进21世纪的大门。人们将怎样面向未来?无论你从事什么工作,也不论你生活在什么地方,都会认识到我们所面临的世纪是科技高度发展的信息时代。计算机是信息处理的主要工具,掌握计算机知识已成为当代人类文化不可缺少的重要组成部分,计算机技能则是人们工作和生活必不可少的基本手段。

基于这样的认识,近年来我国掀起了一个全国范围的学习计算机热潮,各行各业的人都迫切地要求学习计算机知识和掌握计算机技能。对于广大的非计算机专业的人们,学习计算机的目的是应用,希望学以致用,立竿见影,而无须从系统理论学起。

掌握计算机技能关键是实践,只有通过大量的实践应用才能真正深入地掌握它。光靠看书是难以真正掌握计算机应用的。正如同在陆地上是无法学会游泳一样,要学游泳必须下到水中去。同样,要学习计算机应用,必须坐到计算机旁,经常地、反复地操作计算机,熟能生巧。只要得法,你在计算机上花的时间愈多,收获就愈大......